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Test spaces (or quasimanuals) were introduced by D. Foulis and C. Randall in
1972 as a language for describing the empirical sciences. They emphasized that
test spaces give a direct description of laboratory operations. Information is lost
in moving from a test space to its corresponding logic, and for this reason, test
spaces provide a more fundamental description of a physical system. Recently,
A. DvurecÏ enskij and S. PulmannovaÂhave introduced a generalization of test
spaces, called D-test spaces, in order to include a description of unsharp
measurements. In the present work, we consider an equivalent framework called
an effect test space or E-test space for short. This gives an alternative viewpoint
that is believed to be simpler and more natural. Moreover, the proofs of results
are more direct. This framework also has connections with some of the recent
work of D. Foulis, R. Greechie, M. K. Bennett, and G. RuÈ ttimann.

1. INTRODUCTION

This article presents a survey of recent work on E-test spaces. The

concept of an E-test space generalizes the test spaces (or quasimanuals) of

Foulis and Randall (1972; Randall and Foulis, 1973) in order to include a

description of unsharp measurements. Moreover, E-test spaces are equivalent

to the D-test spaces of DvurecÏ enskij and PulmannovaÂ(1994) and unify the
recent work of various investigators (Foulis et al., 1993, n.d.).

Morphisms, bimorphisms, and tensor products of E-test spaces and the

relationships to their counterparts for effect algebras are investigated. The

universal group of an E-test space is defined and studied. It is stated that

any E-test space possesses a universal group that is unique to within an

isomorphism. Moreover, the universal group is a test group (Foulis et al.,
n.d.) that determines the E-test space to within an isomorphism. We finally

1 Department of Mathematics and Computer Science, University of Denver, Denver, Colo-
rado 80208.

75

0020-7748/98/0100-007 5$15.00/0 q 1998 Plenum Publishing Corporation



76 Gudder

consider compatibility and observables on E-test spaces. Proofs of results

cannot be included in this short survey and will appear in a later article.

To motivate our work, a test t is an ideal, perfectly accurate (sharp)
measurement. Let x be a possible outcome of an experiment that is relevant

to (testable by) t. If x occurs, then t registers yes and if x does not occur, t
registers no. For example, a particle detector t tests whether a particle is in

a certain region R. For x P R, if a particle is at x, then t clicks and for x ¸
R, if a particle is at x, then t does not click.

Now make N runs of an experiment, where N is a large integer. For
simplicity, suppose that there are only a finite number of outcomes S (t) 5
{x1, . . . , xn} that are tested by t. Let t (xi) be the number of times xi occurs,

i 5 1, . . . , n. Then t is described by the function t: S (t) ® N0 5 N ø {0}.

An effect f is considered to be a submeasurement of t that may not be sharp.

Suppose the set of outcomes tested by f is S ( f ) 5 {x1, . . . , xm}, m # n.
Now rerun the experiment N times and let f (xi) be the number of times that
f registers a yes when xi occurs. If f is unsharp, it may not register yes when

xi P S ( f ) occurs. Moreover, on rare occasions, f may register a false yes

when xi P S ( f ) does not occur, but then f will give a short count for some

other xj P S ( f ). On the average we would have f (xi) # t (xi) for i 5 1, . . . ,

m. The confidence function for f is defined to be fÃ: S ( f ) ® [0, 1], where
fÃ(xi) 5 f (xi)/t (xi). This function gives the confidence that f will register yes

when xi occurs, i 5 1, . . . , m. We would then have that tÃ5 IS(t), where IS(t)

is the indicator (characteristic) function of the set S (t) and f is sharp if and

only if fÃ5 IS(t); that is, f (xi) 5 t (xi) for all xi P S ( f ).

We now give precise mathematical definitions that are motivated by our

previous discussion. Let X be a nonempty outcome space corresponding to
a physical system and let 7 # NX

0 . We call (X, 7) an E-test space if the

following conditions hold.

(1) For any x P X there exists a t P 7 such that t (x) Þ 0.

(2) If s, t P 7 with s # t [i.e., s (x) # t (x) for all x P X ], then s 5 t.

Condition (1) states that every outcome is testable by at least one test t P
7 and condition (2) states that tests are not redundant.

We call f P NX
0 an effect if f # t for some t P 7 and denote the set of

effects by % 5 %(X, 7). The null effect is the function f0 P % that satisfies

f0(x) 5 0 for all x P X. We say that f, g P % are:

(i) orthogonal ( f ’ g) if f 1 g P %
(ii) local complements of each other ( f loc g) if f 1 g P 7
(iii) perspective ( f ’ g) if they share a local complement.

We say that (X, 7) is algebraic if for f, g, h P %, f ’ g and h ’ f
imply h ’ g. If (X, 7) is algebraic, then ’ is an equivalence relation and

we denote the equivalence class containing f P % by p ( f ). Then the logic
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P (X ) 5 %/ ’ 5 { p ( f ): f P %}

can be organized into an effect algebra (Foulis and Bennett, 1994) in a natural

way. Conversely, any effect algebra is isomorphic to the logic of an algebraic
E-test space.

2. MORPHISMS AND BIMORPHISMS

Let X, Y be nonempty sets and let f : X ® Y. For f P NX
0 , we define

f Ã( f ): Y ® N0 ø { ` } by

f Ã( f )( y) 5 ( { f (x): f (x) 5 y}

If (X, 7), (Y, 6) are E-test spaces, then f : X ® Y is a morphism if f Ã(t) P
6 for every t P 7. If f is a bijective morphism and f 2 1 is a morphism,

then f is an isomorphism. A mapping c : %(X ) ® %(Y ) is an effect morphism
if c (t) P 6 for every t P 7 and f ’ g implies that

c ( f 1 g) 5 c ( f ) 1 c (g)

If c is a bijective effect morphism and c 2 1 is an effect morphism, then c is

an effect isomorphism. The next result summarizes some of the important

properties of morphisms and effect morphisms.

Theorem 2.1. (a) If f : X ® Y is a morphism, then f Ã: %(X ) ® %(Y ) is

an effect morphism. (b) A mapping f : X ® Y is an isomorphism if and only

if f Ã: %(X ) ® %(Y ) is an effect isomorphism. (c) A mapping c : %(X ) ®
%(Y ) is an effect isomorphism if and only if there exists an isomorphism f :

X ® Y such that c 5 f Ã.

The following result gives the connection between effect morphisms on

algebraic E-test spaces and effect algebra morphisms (Foulis and Bennett,

1994).

Theorem 2.2. Let (X, 7), (Y, 6) be algebraic E-test spaces and let c :

%(X ) ® %(Y ) be an effect morphism. Then c Ä : P (X ) ® P (Y ) given by c Ä
( p ( f )) 5 p ( c ( f )) is an effect algebra morphism. If c is an effect isomorphism,

then c Ä is an effect algebra isomorphism.

For f P NX
0 , g P NY

0, we define f 3 g P NX 3 Y
0 by ( f 3 g)(x, y) 5

f (x)g ( y). Let (X, 7), (Y, 6), (Z, 8) be E-test spaces and let b : X 3 Y ® Z.
For f P %(X ), g P %(Y ), we define b Ã( f, g): X 3 Y ® N0 ø { ` } by
b Ã( f, g) 5 b Ã( f 3 g). We call b a bimorphism if b Ã(t, s) P 8 for all t P 7,

s P 6. A mapping a : %(X ) 3 %(Y ) ® %(Z ) is an effect bimorphism if it

satisfies the following conditions:

(i) a (t, s) P 8 for every t P 7, s P 6.
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(ii) For f, g P %(X ), h, i P %(Y ), if f ’ g, then

a ( f 1 g, h) 5 a ( f, h) 1 a (g, h)

and if h ’ i, then

a ( f, h 1 i) 5 a ( f, h) 1 a ( f, i)

We say that b or a is algebraic if for all t1, t2 P 7, s1, s2 P 6, f P %(X ),

g P %(Y ) we have b Ã(t1, g) ’ b Ã(t2, g), b Ã( f, s1) ’ b Ã( f, s2) or a (t1, g) ’ a (t2, g),

a ( f, s1) ’ a ( f, s2), respectively. The next results summarize some important

properties of bimorphisms and effect bimorphisms.

Lemma 2.3. If b : X 3 Y ® Z is a bimorphism, then b Ã: %(X ) 3 %(Y )

® %(Z ) is an effect bimorphism. Also, b is algebraic if and only if b Ã
is algebraic.

Theorem 2.4. Let (X, 7), (Y, 6), (Z, 8) be algebraic E-test spaces. If

a : %(X ) 3 %(Y ) ® %(Z ) is an algebraic effect bimorphism, then a Ä : P (X )

3 P (Y ) ® P (Z ) defined by

a Ä ( p ( f ), p (g)) 5 p ( a ( f, g))

is an effect algebra bimorphism.

Let (X, 7), (Y, 6), (Z, 8) be E-test spaces. If t : X 3 Y ® Z is an

(algebraic) bimorphism, we call (Z, 8, t ) an (algebraic) tensor product of

(X, 7) and (Y, 6) if t is surjective and for every (algebraic) E-test space (V,
0) and (algebraic) bimorphism b : X 3 Y ® V, there exists a morphism f :

Z ® V such that b 5 f + t .

Lemma 2.5. If an (algebraic) tensor product of (algebraic) E-test spaces
exists, then it is unique to within an isomorphism.

Theorem 2.6. Let (X, 7), (Y, 6) be E-test spaces, If

7 3 6 5 {t 3 s: t P 7, s P 6}

then (X 3 Y, 7 3 6, t ) is their tensor product, where t is the identity

mapping on X 3 Y.

Theorem 2.7. The algebraic tensor product of algebraic E-test spaces

(X, 7), (Y, 6) exists if and only if there exists an algebraic E-test space (Z,

8) and an algebraic bimorphism b : X 3 Y ® Z.

Corollary 2.8. (a) If the algebraic tensor product of algebraic E-test

spaces (X, 7), (Y, 6) exists, then the effect algebra tensor product of P (X )

and P (Y ) exists. (b) There exist algebraic E-test spaces that do not admit an

algebraic tensor product.
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The proof of Corollary 2.8(b) follows from the fact that there are effect

algebras whose tensor products do not exist (Gudder and Greechie, 1996).

3. UNIVERSAL GROUPS

Let (X, 7) be an E-test space and let G be an additive abelian group.

A mapping f : %(X ) ® G is a group-valued measure if f, g P % with f ’
g implies f ( f 1 g) 5 f ( f ) 1 f (g). A universal group for (X, 7) is a

pair (G, g ), where g : % ® G is a group-valued measure that satisfies the

following conditions:

(i) g (%) generates G.
(ii) If f : % ® H is a group-valued measure, then there exists a group

homomorphism c : G ® H such that f 5 c + g .

Lemma 3.1. Universal groups are unique to within a group isomorphism.

Theorem 3.2. For an E-test space (X, 7), let G be the subgroup of ZX

generated by %(X ) and let g : %(X ) ® G be the injection g ( f ) 5 f. Then

(G, g ) is the universal group for (X, 7).

Applying the two previous results, an E-test space (X, 7) has a unique

(to within a group isomorphism) universal group (G, g ). We call (G, g ) of

Theorem 3.2 the universal group for (X, 7). For f, g P G, define f # g if

f (x) # g (x) for all x P X. Then (G, # ) becomes an abelian partially ordered

group with generating positive cone G + 5 { f P G: f $ f0}. Since

{ f P G 1 : f # t for some t P 7}

generates G +, 7 is a generating antichain in G. This shows that (G, 7) is a
test group (Foulis et al., n.d.).

Two test groups (G1, 71) and (G2, 72) are isomorphic if there exists an

order and group isomorphism c : G1 ® G2 such that c (71) 5 72 . Unlike

effect algebras, for which two nonisomorphic effect algebras can have the

same universal group, the universal group of an E-test space (X, 7) determines
(X, 7) to within an isomorphism.

Theorem 3.3. Two E-test spaces are isomorphic if and only if their

universal groups are isomorphic test groups.

Let (G, g ) be the universal group of (X, 7) and let H be the subgroup

of G generated by

N 5 { f 2 g: f, g P %, f ’ g}

Let GÃ5 G /H and denote elements of GÃby [g], g P G. Assume (X, 7) is

algebraic and define g Ã: P (X ) ® GÃby g Ã( p ( f )) 5 [ f ]. Notice that g Ãis well

defined because g ’ f implies [g] 5 [ f ].
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Theorem 3.4. If (X, 7) is algebraic, then (GÃ, g Ã) is the universal group

of P (X ).

As a corollary, we obtain the following fundamental result (Foulis and

Bennett, 1994).

Corollary 3.5. An effect algebra admits a universal group.

4. COMPATIBILITY AND OBSERVABLES

For an E-test space (X, 7), if t P 7, we define %t 5 { f P %: f # t}.
We say that a set 6 # % is compatible if 6 # %t for some t P 7. If f, g
are compatible, we write f l g and it is clear that l is a reflexive, symmetric

relation. The next lemma summarizes some of the elementary properties

of compatibility.

Lemma 4.1. (a) f l f0 (b) f l t P 7 if and only if f # t. (c) For s, t
P 7, s l t if and only if s 5 t. (d) If f l g, f1 # f, and g1 # g, then f1 l
g1. (e) 6 # % is compatible if and only if Ú { f : f P 6} # t for some t P 7.

A finite number of fi P %, i 5 1, . . . , n, are orthogonal if S fi # t for

some t P 7. An indexed family f a , a P A, is orthogonal if every finite

number of the f a ’ s are orthogonal. The following result gives a relationship

between compatibility and orthogonali ty.

Theorem 4.2. (a) f a , a P A, is orthogonal if and only if for every x P
X, f a (x) 5 0 except for a finite number of a P A and ( f a # t for some

t P 7. (b) If f a , a P A, is orthogonal, then the set of different f a ’ s is

compatible. (c) 6 # % is compatible if and only if there exists an orthogonal
family f a , a P A, such that

f 5 ( { f a : a P B # A}

for every f P 6.

We denote the family of Borel subsets of R by @(R). An observable
on an E-test space (X, 7) is a mapping F: @ (R) ® % that satisfies the
following conditions.

(i) F (R) P 7.

(ii) If Ai P @(R), i P N, are mutually disjoint, then F ( ø Ai) 5 ( F (Ai),

where the summation converges pointwise.

We now summarize some of the elementary properties of observables.

Lemma 4.3. Let F be an observable on (X, 7) with F (R) 5 t P 7. (a)

If A # B, then F(A) # F(B) and F(B) 5 F(A) 1 F (B \ A). (b) F(A) P %t ,

so {F(A): A P @(R)} is compatible. (c) F ( [ ) 5 f0. (d) F (A ø B) 5 F(A)
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1 F(B) 2 F (A ù B). (e) If Ai are mutually disjoint, then F (Ai) are orthogonal.

(f) If Ai is a decreasing (increasing) sequence, then lim F (A i) 5 F ( ù Ai)

(F ( ø Ai)) pointwise.

Two observables F, G are compatible (F l G) if F(R) 5 G (R). If F is

an observable and u: R ® R is a Borel function, define the observable u (F ):

@(R) ® % by u (F )(A) 5 F (u 2 1) (A)). If F ({ l }) Þ f0, then l is an eigenvalue
of F and F ({ l }) is the corresponding eigeneffect. We denote the set of
eigenvalues of F by s p(F ) and we call s p(F ) the point spectrum of F. In

general, s p(F ) need not be a Borel set.

Lemma 4.4. (a) F l G if and only if F(A) l F(B) for all A, B P
@ (R). (b) If F 5 u (H ), G 5 v(H ), then F l G, F l H, G l H.

Theorem 4.5. If F is an observable and u a Borel function, then

s p (u (F )) 5 u ( s p(F )).

We now consider various types of observables. An observable F is

atomic if for every A P @(R) we have

F (A) 5 ( {F ({ l }): l P A ù s p(F )}

We call F a universal observable for t P 7 if F (R) 5 t and for any observable

G such that G (R) 5 t there exists a Borel function u such that G 5 u (F ).

We call F a maximal observable for t P 7 if for every f P %t there exists

an A P @(R) such that F(A) 5 f.

Theorem 4.6. (a) Every observable is atomic. (b) Every universal observ-

able is maximal.

The converse of Theorem 4.6(b) does not hold. For t P 7 we define

the support S(t) of t by S(t) 5 {x P X: t(x) Þ 0}, and denoting the cardinality

of a set A by | A | , we define

card(t) 5 | ( {t (x): x P S(t)} |

Notice that | S(t) | # card(t) and if | S(t) | is infinite, then | S(t) | 5 card(t).

Theorem 4.7. (a) t P 7 admits a maximal observable if and only if

card(t) # | R | . (b) If F is a universal observable for t, then | s p(F ) | 5 card(t).
(c) If t P 7 admits a universal observable, then card(t) # | R | .

It is unknown whether the converse of Theorem 4.7(c) holds. There are
many important examples in which card (t) # | N | . For instance, consider an

algebraic E-test space whose logic is the standard effect algebra on a separable

Hilbert space. We now show that if card (t) # | N | , then strong results can

be obtained.
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Theorem 4.8. If card(t) # | N | , then t admits a universal observable F
and F is unique to within a Borel isomorphism.

Corollary 4.9. It card (t) # | N | and F, G are observables for t, then
there exists an observable H and Borel functions u, v such that F 5 u (H ),

G 5 v(H ).

If P is an effect algebra, an effect algebra observable on P is a morphism

F: @(R) ® P. That is, F (R) 5 1 and A,B P @(R) with A ù B 5 [ imply

that F(A) ’ F(B) and F (A ø B) 5 F(A) % F(B).

Theorem 4.10. If (X, 7) is an algebraic E-test space and F: @(R) ® %
is an observable, then FÃ: @(R) ® P (X ) given by FÃ(A) 5 p (F (A)) is an

effect algebra observable.

An effect f is sharp in t P 7 if f # t and f (x) 5 t (x) for all x P S ( f ).
For t P 7, form the Hilbert space _t consisting of the functions c : S(t) ®
C such that ( | c (x) | 2 , ` . For f P %t , define the bounded linear operator fÃ

on _t by ( fÃc ) (x) 5 [ f (x)/t (x)] c (x). It is clear that %Ãt 5 { fÃ: f P %} is a

subset of the standard Hilbert space effect algebra on _t. The next result

shows that in this case, observables correspond to the usual positive operator-

valued (POV) measures of Hilbert space quantum mechanics.

Theorem 4.11. (i) If F is an observable for t, then FÃis a POV measure

on _t. (ii) f P %t is sharp if and only if fÃis a projection.

We close this article with a discussion of the spectrum of an observable

F. Physically, the spectrum of F is the set of values that F can attain arbi-
trarily closely.

Theorem 4.12. If F is an observable, then there exists a largest open set

A , R such that F (A) 5 f0.

The complement A c of the above set A in Theorem 4.12 is the spectrum
of F and is denoted s (F ). Clearly, s (F ) is the smallest closed set B # R
such that F(B) 5 t for some t P 7.

Lemma 4.13. A real number l is an element of s (F ) if and only if for

every open set A such that l P A, we have F(A) Þ f0.

There are simple examples which show that s p (F) Þ s (F ) in general.
Nevertheless, there is a close relationship between s p(F) and s (F ). We denote

the closure of a set A # R by AÅ .
Our last result is called a spectral mapping theorem. This theorem gives

a relationship between s (u (F )) and u ( s (F )).
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Theorem 4.15. Let F be an observable and u: R ® R be a Borel function.

(a) s (u (F )) # u( s (F )). (b) If u is continuous, then s (u (F )) 5 u ( s (F )).

(c) If s (F ) is bounded and u is continuous on s (F ), then s (u (F )) 5 u ( s (F )).
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